
Technical Paper

tECHNICAL 
Overview
May 2023

DISCLAIMER
The material provided herein is for informational purposes only. It does not constitute an offer to sell or a

solicitation of an o�ffer to buy any interests in any other securities. Certain statements herein may constitute

forward-looking statements. When used herein, the words “may,” “will,” “should,” “project,” “anticipate,” “believe,”

“estimate,” “intend,” “expect,” “continue,” and similar expressions or the negatives thereof are generally intended to

identify forward-looking statements. Such forward-looking statements, including the intended actions and

performance objectives of Archway involve known and unknown risks, uncertainties, and other important factors

that could cause the actual results, performance, or achievements of Archway in its development of the system,

network, its components, and the tokens to di�ffer materially from any future results, performance, or achievements

expressed or implied by such forward-looking statements. No representation or warranty is made as to future

performance or such forward-looking statements. All forward-looking statements herein speak only as of the date

hereof. Archway expressly disclaims any obligation or undertaking to disseminate any updates or revisions to any

forward-looking statement contained herein to refl�ect any change in its expectation with regard thereto or any

change in events, conditions, or circumstances on which any such statement is based. You are not to construe this

light paper as investment, legal, tax, regulatory, financial, accounting or other advice, and this light paper is not

intended to provide the basis for any evaluation of an investment in an interest. The ARCH token will not be offered

in the United States or to U.S. persons or to residents of certain other prohibited jurisdictions. .

The information provided in this document is for general informational purposes only. It does not constitute, and

should not be considered, a formal off�er to sell or a solicitation of an o�ffer to buy any security in any jurisdiction,

legal advice, investment advice, or tax advice. If you are in need of legal advice, investment advice or tax advice,

please consult with a professional adviser. The Archway protocol is under development and is subject to change.

As such, the protocol documentation and contents of this website may not refl�ect the current state of the protocol

at any given time. The protocol documentation, document, and website content are not �final and are subject to

change.

Learn more here

2Technical Paper

https://docs.archway.io/overview/faq#tokens-will-not-be-offered-in-the-following-prohibited-jurisdictions

3Technical Paper

Table of
contents
Archway Overview

Archway Architecture

Archway Modules

Conclusion

References

Application-Specific Blockchains vs. Smart Contracts

Cosmos SDK

Tendermint Core

Application Blockchain Interface (ABCI)

ABCI Interface Methods

Auth Module

Bank Module

Staking Module

Slashing Module

Minting Module

Governance Module

Crisis Module

Upgrade Module

Evidence Module

Inter-Blockchain Communication Protocol

WebAssembly Smart Contracts

Authorization and Grant Module

Fee Grant Module

Rewards Module

Tracking Module

4

5

13

36

37

5

6

6

7

8

15

15

16

17

18

18

19

20

20

21

25

27

29

30

33

Archway 
Overview
Archway is a Layer 1 Cosmos-SDK blockchain that enables decentralized application (dapp)

developers to capture the value they create for an underlying network.

The protocol distributes tokens to dapps based on the volume of activity they bring to the network,

sharing a portion of network fees and newly minted tokens with validators and stakers. The network

also allows developers to add premiums to their smart contracts.

Archway provides cross-language support for smart contracts with WebAssembly (WASM) and native

bridges to other networks. Cross-chain communication and asset transfers are powered by the Inter-

Blockchain Communication protocol (IBC) from the Cosmos SDK. Archway developers can deploy

contracts to an established Proof-of-Stake (PoS) network, connecting them to users, assets, and

communities from across the Cosmos ecosystem, and providing a viable alternative to building and

maintaining an application-specific blockchain.

This document outlines the technical architecture of Archway. Archway includes customized SDK

modules for Minting, CosmWasm smart contracts, Distribution, Staking, and Governance, as well as

default Cosmos SDK modules for managing inflation and rewards. Since Archway is built on the

Cosmos SDK, the Cosmos technology and modules will also be explained.

¹

4Technical Paper

¹ https://archway.io/assets/Archway-Lightpaper.pdf Archway Lightpaper: An Introduction to Archway. Archway.io.

https://archway.io/assets/Archway-Lightpaper.pdf

5Technical Paper

Archway
Architecture
Cosmos is a network of parallel, independent blockchains. Its SDK enables scalable, application-

specific blockchains with Byzantine fault tolerant (BFT) consensus, that can interoperate with other

independent blockchains in the Cosmos ecosystem.

Cosmos promotes the idea of self-sovereign blockchains, but in many cases, it makes sense to deploy a

project first as a dapp. Launching and maintaining a blockchain requires infrastructure and resources.

The Cosmos SDK simplifies this process, but developers must still incentivize a community of

validators to secure their network. These efforts can be daunting for many early stage projects. Below is

a comparison of building an application-specific blockchain versus building smart contract

applications.

App Chain 
vs. Dapp

Some key differences between app chains and smart contracts are: customization level, performance,

use cases, and technical requirements.

Developing an application-specific blockchain allows for complex, full stack customizations (e.g.

Archway’s x/rewards calculates every unit of gas used in contract executions). While they are generally

more performant, because the native application-specific chain runs as a binary, there can be a lot of

overhead in execution for smart contract code as it must always be loaded into a Virtual Machine.

App chains support a single purpose within their protocol (e.g. Stargaze is an application specific

blockchain created to operate a decentralized NFT marketplace). Therefore, a potential hurdle for app

chains is that they require deeper technical development and resources than developing smart

contracts.

Cosmos blockchains are comprised of three core components: the Cosmos Software Development Kit

(Cosmos-SDK), Tendermint Core and the Application Blockchain Interface (ABCI).

6Technical Paper

Cosmos SDK

The Cosmos SDK is a software development kit for building sovereign blockchains. It is an open-

source framework that allows developers to build custom blockchains that can natively interoperate

with other Cosmos SDK blockchains.

Blockchains built with Cosmos SDK are commonly referred to as application-specific blockchains, or

zones. Archway is a Cosmos SDK blockchain.

²

Tendermint Core

A blockchain can be divided into three layers: networking, consensus, and application. Before

Tendermint was created, building a blockchain required developing all three layers, which represented

a considerable amount of work.

The goal of Tendermint is to aid development by providing a standard engine to power the networking

and consensus layers. With Tendermint, Developers only need worry about the application layer, over

which they have full control. The interface that connects the state machine (application) to the

underlying consensus engine is a socket protocol called Tendermint ABCI.

Tendermint is a Byzantine fault tolerant (BFT) consensus engine. Byzantine fault tolerance in distributed

systems means messages can be broadcast between all parties, and reliable agreements can be

formed, even when there are dishonest and adversarial parties involved. Tendermint is widely

considered a gold standard for BFT consensus and Proof-of-Stake (PoS) blockchains.

A Tendermint blockchain is operated and maintained by a set of nodes. Nodes are the agents of a

blockchain, and can be divided into two main categories: Validator nodes (the ones that decide on the

next block), and non-validator nodes (the ones that can only execute blocks proposed by the validators).

A Tendermint blockchain can be divided into two main components: the Consensus Engine and the

State Machine.

² https://docs.cosmos.network/main/intro/overview High-level Overview. Cosmos SDK Documentation.

https://docs.cosmos.network/main/intro/overview

7Technical Paper

1. Consensus Engine

The consensus engine is Tendermint Core, which handles

 Peer To Peer (P2P) messaging between nodes that propagates transactions, blocks, and signifies

malicious behavio

 Deciding which validator should propose the next bloc

 Deciding on the ordering of transaction

 Agreeing on a common tim

 Maintaining a mempool where transactions are stored while waiting to be included in a block

2. State Machine

The state machine is at the application layer, which handles

 The interpretation of state transitions (transactions

 Changes to the active validator se

 How to punish validators in the case of misbehavior

Application Blockchain Interface (ABCI)

Tendermint offers a primitive abstraction layer

called the ABCI, which allows developers to

safely implement a blockchain.

The ABCI interface defines a set of boundaries

between duties of the state machine and duties

of the consensus engine.

State machines define their specific application

logic by implementing ABCI interface methods.

³

³ https://github.com/tendermint/tendermint/tree/main/abci Application Blockchain Interface. Tendermint. 2022.

https://github.com/tendermint/tendermint/tree/main/abci

8Technical Paper

ABCI Interface Methods

The ABCI provides methods for procedures to be executed by Tendermint during the transition of state.

Each Cosmos SDK module must define specific procedures to be compliant with the ABCI. Cosmos

blockchains require implementing the following ABCI interface methods: CheckTx, BeginBlock,

DeliverTx, EndBlock, and Commit.

CheckTx

CheckTx is a phase that acts as a guard for the node mempool. It signals to the state machine that a

new transaction would like to be part of the mempool, and the state machine tells Tendermint Core to

either insert the transaction into the mempool or reject it.

BeginBlock

BeginBlock signals to the state machine that a new block was proposed. It contains useful information

for the state machine, such as agreed consensus time (BFT time), evidence of misbehavior of validators

(if any exists), and the current block height.

DeliverTx

DeliverTx signals to the state machine to execute a specific transaction contained in a block. After the

transaction is executed, the state machine reports information back to Tendermint Core, such as gas

consumed, whether or not it was successful, and Events (e.g., objects containing metadata such as the

type of Cosmos message that was executed).

EndBlock

EndBlock signals to the state machine that the execution of a block’s transactions has finished.

The state machine can optionally return a change to the validator set, or new consensus parameters

(e.g., update the gas limit for future blocks).

Commit

During this phase, Tendermint signals to the application that computations which have occurred thus

far need to be committed to state. The application produces a hash which represents the current state

of the state machine. In order for Commit to succeed, all nodes must return the same hash value to

ensure that state machine replication was successful. Enforcing the equivalency of hashes of the

current state, across all nodes, signals successful determinism.

9Technical Paper

Modules

ABCI Interface Methods are implemented via Modules which contain the business logic of a Cosmos

SDK blockchain, and define how the blockchain operates and interacts with other Cosmos chains.

Modules can work together and execute at different phases of the ABCI interface process. They

provide a less-primitive way of defining state machine functionality, and can either be default (e.g.

Cosmos SDK modules) or custom (e.g. Archway modules).

Interacting With the ABCI Interface

In the following sections, we will analyze the anatomy of a Cosmos SDK module and highlight how each

component interacts with the ABCI interface. The components we will analyze are: BeginBlock,

RunMsg, CheckTx, DeliverTx, EndBlock, AnteHandlers, and custom components.

BeginBlock

Every module can define actions to perform during BeginBlock, which occurs before any transaction is

processed for a block. A module implementing BeginBlock can perform preliminary actions such as

minting tokens (x/minting), tracking gas consumption (x/tracking), and keeping track of validator

misbehavior so that dishonest validators can be penalized later (x/evidence). Developers can define

the order of a module’s BeginBlock functions. This set of functions is then executed together, in order,

when Tendermint signals to the blockchain that it should perform BeginBlock actions.

RunMsg

The RunMsg procedure verifies that a Cosmos message has been properly registered for an

application (e.g., by a module).

CheckTx

During CheckTx, Cosmos SDK creates a cache of the current state and simulates execution of the

transaction. Each transaction’s messages are forwarded to the module which handles that message

type (e.g., x/bank handles MsgSendCoins, x/staking handles MsgDelegate, etc.).

If the execution is successful, Cosmos SDK reports to the Tendermint Core that the transaction is valid

and can be included in the mempool. The created cache is then eliminated and discarded, and no state

changes are applied yet.

10Technical Paper

DeliverTx

If DeliverTx is executing, it means that a transaction that was already in the mempool and has passed

CheckTx verification. During DeliverTx, Cosmos SDK creates a cache of the current state. Execution

then follows a similar verification process to CheckTx. If a transaction is successful it gets committed

to the current state. If a transaction fails, the block will report it as failed. Any state changes made in

failed transactions will be reverted to their original state.

EndBlock

Every module can define actions to perform during EndBlock. These actions will be performed after all

the transactions of a block are executed. Some examples of EndBlock interactions can be found in the

x/staking module, which returns changes to the validator set after it processes the new delegations,

and Archway’s x/rewards module, which processes rewards to be distributed to smart contracts.

The Cosmos SDK allows developers to define the order of each module’s EndBlock functions. This set

of functions is executed together, in order, when Tendermint Core signals to the Cosmos SDK

blockchain that it should perform EndBlock actions.

AnteHandlers

AnteHandlers are functions that run after a transaction is decoded into a set of messages and

authentication data, before the RunMsg phase. Multiple AnteHandlers are chained together by the

Cosmos SDK into a single one, which runs each individual AnteHandler sequentially as defined by the

developer. AnteHandlers can perform preliminary actions, but they don’t execute messages. Examples

of AnteHandlers can be found in the x/auth module, which verifies authentication data of a

transaction, and Archway’s x/rewards module, which splits transaction fees between validators,

stakers, and smart contracts.

Custom components

Module methods are extensible and can be used to define custom components. Some examples of

custom methods could be: a Genesis Import and Export feature; which modules implement to export or

import the state into a human readable format (e.g. JSON); or, a Migrations feature wherein modules

can define specific ways to migrate their state from one version to another during chain upgrades.

11Technical Paper

Anatomy of a Cosmos SDK transaction

A Cosmos SDK transaction is a set of bytes encoded using Protobuf, which can be decoded into a set

of messages and authentication data. The Cosmos SDK allows every module to define a set of

messages and handlers for those messages. A transaction message defines a state transition which

changes the state based on the module’s specific logic.

Examples

 x/bank MsgSendCoins allows users to move coins and tokens from one account to anothe

 x/staking MsgDelegate allows users to delegate tokens to a validato

 Archway’s x/rewards WithdrawRewards allows users and contracts to withdraw their accrued

dapp incentives

12Technical Paper

Relationship between RunMsg, DeliverTx and
CheckTx

RunMsg is run during both DeliverTx and CheckTx.  

The transaction bytes provided by Tendermint during DeliverTx and CheckTx are converted into a set

of messages (Msgs) which are mapped into the modules’ message handlers.

13Technical Paper

The Archway
Modules

14Technical Paper

The Cosmos SDK comes with predefined modules for core blockchain functionality and Inter-

Blockchain communication. These modules provide the basic set of functionalities of a blockchain (e.g.

transaction authentication, Proof-of-Stake, accounting).

Archway Modules

x/auth x/slashing

x/upgrade x/bank

IBC Protocol x/evidence

x/staking x/mint

x/feegrant x/gov

x/crisis x/authz

Rewards Module Tracking Module

Wasm VM

Figure 4

ABCI Application

Archway’s economical model depends on custom modules that extend the Cosmos SDK

with functionality for disbursing ARCH tokens and tracking the gas consumption of smart

contracts. This section explains both the Cosmos SDK modules that are included in

Archway, as well as the custom ones. The SDK modules included are: Auth, Bank, Staking,

Slashing, Minting, Governance, Crisis, Upgrade, Evidence, IBC, CosmWasm, Authorization

and Grant (authz), and Feegrant.

The custom modules included are x/rewards and x/tracking.

15Technical Paper

Auth Module

The x/auth module handles accounts and authentication.⁴

Accounts

Accounts define identities in an abstract way. The identity is defined through what we call an address.

Modules, smart contracts, and external users can have an account. External users have accounts

mapped to public keys which are used for signature verification that ensures the sender of a transaction

is the actual owner and not some impersonator. Modules and smart contracts can have accounts too,

but they do not have public keys— instead, they only have an address which will never map to a public

key. x/auth’s duty is to specify the transaction format and different account types for an application, as

Cosmos SDK modules are agnostic regarding these formats. x/auth contains multiple AnteHandlers

such as signature verification and fee deduction. Signature verification validates user signatures in a

transaction. Fee deduction ensures the account sending the transaction has the funds to pay for it, and

it also forwards fees to the Fee Collector module account. Accounts also provide access to other

modules to read and modify accounts.

Fee Collector

Fee Collector is a special type of module account defined in x/auth as part of the Cosmos SDK design.

It stores network fees from transactions to disburse them to validators. In the Archway protocol, fees

stored by the Fee Collector are also a source of developer rewards (e.g. disbursed by x/rewards).

Bank Module

The x/bank module handles the blockchain’s accounting. Each account is mapped from the x/auth

module to the x/bank module with an associated balance. x/bank tracks and provides query support

for account balances.

x/bank handles moving assets in a safe way between different accounts. Moving assets is not

restricted to transferring funds between accounts: it also includes actions such as delegations and

undelegations. Vested accounts cannot move vested funds until the vesting criteria is met; however,

they can still delegate, undelegate, and spend the staking rewards of vested funds.

⁵

⁴ https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/

auth/README.md

⁵ https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/

bank/README.md

 Cosmos SDK Auth Module. 2022.

 Cosmos SDK Bank Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/bank/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/bank/README.md

16Technical Paper

x/bank also handles accounting for coins. Note that coins, in this context, are not the same thing as

tokens. The term tokens refers to the native payment token of the SDK blockchain, but the term coins

refers to assets created and managed on the blockchain by smart contracts. The difference between a

coin (e.g. cw20) and a token (e.g. ARCH) in Cosmos SDK blockchains is similar to the distinction

between Ether (ETH) and ERC-20 tokens on Ethereum.

Staking Module

The x/staking module manages changes to the validator set using Proof-of-Stake.⁶

Proof-of-Stake (PoS)

Proof-of-Stake is a model for participants to stake using tokens. The staked tokens act as collateral that

can be slashed in the case of validator misbehavior. Staked tokens are commonly referred to as

“bonded” tokens. Cosmos SDK uses this bonded stake to determine the active set of validators. x/

staking tracks the supply of tokens bonded to the security of the network as well as the supply of

unbonded tokens.

Validators and Delegators

There are two types of stakers

 Validator

 Delegators

Validators are stakers with tokens bonded to the network: They are running a full node that participates

in consensus. There is a limited set of validators that are selected, based on their stake in the network,

to ensure the security of it.

Delegators are stakers with tokens bonded to an existing validator. These stakers are helping the

validator be selected to sign blocks, known as the active set.

Both validators and delegators have the ability to unbond their tokens, but are subject to an unbonding

period, during which they remain liable for misbehaviors committed prior to the completion of the

unbonding transaction.

Notably, delegating to a validator enables a shared reward-risk scenario: The validator shares rewards

with delegators, but if the validator misbehaves, the delegator will also be penalized.

⁶ https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/

staking/README.md

 Cosmos SDK Staking Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/staking/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/staking/README.md

17Technical Paper

Validators have three possible states

 Unbonde

 Bonde

 Unbonding

Unbonded validators are not in the active set. They will need to bond a sufficient amount of tokens

before they can sign blocks and earn yield.

Bonded validators have bonded a sufficient amount of tokens. They are part of the active validator set

and can sign blocks and earn yield.

Unbonding validators are in the process of leaving the active set, either by choice, or because they no

longer meet the criteria to remain in the active set. Reasons for no longer meeting the criteria to remain

in the active set could be due to slashing (see Slashing Module below), jailing (missing too many

blocks), or tombstoning (permanently removed from the active set for offences).

x/bank also handles accounting for coins. Note that coins, in this context, are not the same thing as

tokens. Tokens refers to the native payment token of the SDK blockchain, but coins refers to assets

created and managed on the blockchain, by smart contracts. The difference between a coin (e.g. cw20)

and a token (e.g. ARCH) in Cosmos SDK blockchains is similar to the distinction between Ether (ETH)

and ERC-20 tokens on Ethereum.

Slashing Module

The x/slashing module disincentivizes actions which put network security at risk. The potential

penalties include burning a validator’s stake or removing their ability to vote on consensus for a period of

time. There are two categories of infractions which are penalized: non-malicious protocol faults and

liveness faults.

⁷

Non-malicious protocol faults

Non-malicious protocol faults could be due to misconfiguration or a faulty protocol update. To mitigate

the impact of these faults, validators may get their funds slashed. However, there is a limit to how many

infractions they will be penalized for. Validators receive slashing penalties only for the first infraction.

Afterwards, they are tombstoned. Since more infractions may be found even while the node is still in

jail, the validator must wait until the jail period expires. When the jail period is over, the node may rejoin

the network by unjailing themselves, but will have to pay for the highest infraction reported while the

node was in jail (this period of time is known as the slashing period).

⁷ https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/

x/slashing/README.md

 Cosmos SDK Slashing Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/slashing/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/slashing/README.md

18Technical Paper

Liveness faults

Liveness infractions can happen when a validator is not ready to verify a block. Contrary to non-

malicious protocol faults, penalties for liveness faults are not capped since they cannot stack upon

each other. Liveness faults are detected when the infraction occurs, and the misbehaving validators are

immediately put in jail so that it is not possible for them to commit multiple liveness faults without

unjailing themselves first.

Minting Module

The x/mint module is responsible for minting tokens and for managing inflation. To incentivize stakers,

the total supply of staking tokens needs to grow with inflation. x/mint allows customization strategies

over the expansion of token supply, but the standard procedure is that the minting of tokens dynamically

reduces or increases due to inflation every block. The goal is to keep a desirable balance between staked

and liquid tokens.

⁸

Example

 Assume the total of staked tokens vs. liquid tokens is 50%. In this optimal scenario, inflation is 5% per

year

 If the total amount of staked tokens drops to 45% (e.g., 55% of tokens are liquid), x/mint raises

inflation to incentivize more accounts to stake until the target of 50% is reached again

 If the total of staked tokens rises to 55% (e.g., 45% of tokens are liquid), x/mint reduces inflation–and

in consequence staking rewards–until the amount of staked tokens returns to 50%.

Governance Module

The x/gov module allows support for governance systems whereby token holders can vote on proposals

on a one-vote-per-token basis. While unbonded token holders cannot participate in governance voting;

they can, however, submit proposals. Bonded participants cannot vote on proposals if they staked, or

became a validator, after the proposal entered its voting period. In a scenario in which a participant has

token bondings with multiple validators in the active set, earlier bondings will override later ones (e.g. in

cases of voting discrepancies). The governance process is divided into three steps: Proposal

Submission, Voting, and Execution.

⁹

⁸ https://github.com/cosmos/cosmos-sdk/blob/

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md

⁹ https://github.com/cosmos/cosmos-sdk/blob/

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md

 Cosmos SDK Minting Mechanism. 2022.

 Cosmos SDK Governance Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md

19Technical Paper

Proposal Submission

During proposal submission, a governance proposal is submitted with a deposit. Once the proposal

reaches a minimum deposit requirement, it is considered submitted and the voting period can begin.

The reason a minimum deposit is required is to avoid spam governance proposals.

Voting

During voting, bonded token holders can send a transaction to vote on the submitted proposal. Votes

can have one of four values: Yes, No, NoWithVeto, or Abstain. The voting period is shorter than the

unbonding period (~2 weeks) to avoid double voting by unbonding tokens.

Execution

After the voting period has expired, if the vote was successful and not rejected, the messages in the

submitted proposal will be executed. Depending on the result of the proposal, deposits may be burned

or returned to their owners. In the case of Approved or Rejected proposals (but not vetoed), deposits

are returned to their respective owners. If more than 1/3rd of voters have voted NoWithVeto, the

proposal is vetoed. In this case, deposits are burned from the governance module account and the

proposal is removed from state.

Crisis Module

The x/crisis module allows other modules to define a set of Invariances. Invariances are functions

which must never fail. x/crisis ensures that no matter what state changes happen in the blockchain,

some assertions always remain true.

Examples of invariances can be found in x/bank and Archway’s x/rewards modules. x/bank defines

an invariance check to ensure balances of accounts are never negative. x/rewards defines an

invariance check which ensures the account balance of the x/rewards module is never lower than the

outstanding rewards to be paid (e.g. x/rewards could not fully process payouts).

Invariance checks are run periodically since they can be extremely slow. A user can also manually

trigger a specific invariance check by spending a specified amount of tokens (usually a large amount). If

the invariance check fails, the chain goes into crisis mode and is halted. This is not ideal, but at the

same time avoids further damage that could impact the blockchain. When x/crisis places a blockchain

in crisis mode, human intervention is required to rescue the chain from its halted state.

¹⁰

¹⁰ https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/

crisis/README.md

 Cosmos SDK Crisis Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/crisis/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/crisis/README.md

20Technical Paper

Upgrade Module

The x/upgrade module administers software upgrades to a live blockchain. x/upgrade works

alongside an operating system process called , which takes care of orchestrating certain

parts of the upgrade such as downloading the binary designated for the upgrade and replacing the

current binary. By stopping the node binary, x/upgrade makes it feasible to conduct software updates,

thus stopping all network nodes and enforcing them to update to the binary selected for the network

upgrade.

Upgrades are usually triggered by a governance vote. Once the governance vote passes, a halt height is

decided. When the blockchain reaches the target halt height, the chain is suspended.

Upgrades can happen in one of the following three ways: binary replacement, binary replacement and

state migration, or binary replacement and state replacement. In the first case, only the node binary

changes, while the state remains unchanged. In the second case, the node binary is changed, and only a

portion of the state is changed (e.g. migration). In the case of replacing both binary and state, a full state

export, and then import, is performed alongside updating the node binary.

¹¹

Cosmovisor

Evidence Module

The x/evidence module enables the submission and handling of arbitrary evidence. It differs from the

standard evidence handling (e.g., from Tendermint Core) handled by the consensus engine.

In Cosmos SDK, evidence is based around the evidence interface contract from x/evidence. Developers

may define their own concrete evidence types that inherit this evidence interface. Submitted evidence is

routed and then passed to a registered handler for the concrete evidence type created by the

developers.

¹²

¹¹ https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/

x/upgrade/README.md

¹² https://github.com/cosmos/cosmos-sdk/blob/

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md

 Cosmos SDK Upgrade Module. 2022.

 Cosmos SDK Evidence Module. 2022.

https://docs.cosmos.network/main/tooling/cosmovisor
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/upgrade/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/upgrade/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md

21Technical Paper

Evidence Proposal Submission

The most basic form of evidence must include logic to represent the following requirements

 A route to find the type of evidenc

 The type of evidenc

 A string representation of the evidence (e.g. a name

 A transaction hash corresponding to the evidenc

 Logic that validates the evidence at compile tim

 The chain height corresponding to the evidence

Evidence Registration

The evidence module must know all possible types of evidence, at run time, that it is expected to

handle. Developers must define a router that registers routes to their evidence at compile time, and

which allows the evidence module to use the evidence metadata to verify the information submitted.

Once the evidence is registered, the router proceeds to find a corresponding handler for the evidence.

This handler is responsible for executing the business logic for handling the evidence (e.g. validating).

Evidence Handling

During BeginBlock the Cosmos SDK transposes arbitrary evidence into a form of data known as an

“equivocation”. Whenever a valid equivocation is submitted in a block, that validator’s stake is slashed

an amount depending on the type of infraction committed. The penalties incurred are delegated to the

x/slashing module.

Inter-Blockchain Communication Protocol

The Inter-Blockchain Communication protocol (IBC) enables cross-blockchain asset transfers between

two sovereign blockchains that have both implemented the Cosmos SDK and ibc-go module. The

module implementation must meet certain requirements to interact with other IBC applications. They

must bind to a port (or ports), include definitions and standardize an encoding format for packet data,

use the default Acknowledgement struct provided by IBC (or optionally define a custom

Acknowledgement struct), and they must implement the ibc-go interface. The following are important

components of ibc-go: Clients, Client State, Client Height, Connections, Paths, Capabilities, Keepers,

Packets, Channels, Timeouts, and Acknowledgement.

¹³

¹³ https://github.com/cosmos/ibc-go Cosmos Inter-Blockchain Communication Protocol. 2022.

https://github.com/cosmos/ibc-go

22Technical Paper

Clients

IBC clients track the consensus state of other blockchains, and have the tools to verify proofs against

the client’s consensus state. IBC clients can be associated with any number of target IBC blockchains.

Client State

An IBC client has a state that must contain chain-specific and light client-specific information

necessary for verifying updates and upgrades to the IBC client.

Client Height

Client height is determined by two distinctions: revision number and revision height. Revision number is

increased when hard fork events occur, and it also marks the revision of the blockchain (e.g. number of

hard forks). Revision height marks the height of the chain within a given revision.

This system of revisions allows the IBC client to distinguish between different versions of the IBC target

chain, and allows for comparison between the heights by using revision numbers to understand the

nature of different nodes.

Connections

Connection Objects perform a connection handshake and are responsible for verifying the light clients

of each counterparty. Once a connection is established it will handle all IBC cross state verifications, as

the transacting blockchains do not talk to each other directly.

Paths

To communicate with another chain, a blockchain will commit state changes to a path reserved for the

specific message and counterparty. Relayers read these paths, watch for updates, and submit data

between the blockchains; e.g. blockchain A and blockchain B. This data, written on the path of

blockchain A, is intercepted by the relayer and passed on to blockchain B in raw bytes, and the client of

blockchain B is responsible for verifying the proof of this message.

Ports

IBC applications can connect to any number of ports that are uniquely identified with a specified ID

(portID). When these ports are binded to, they return a capability object that restricts the execution

nature of the port. It is the responsibility of the IBC Client to claim the capability that corresponds to it

when the port is binded to.

23Technical Paper

Capabilities

The Cosmos SDK assumes the development of SDK modules could include faulty or malicious code.

For this reason, the SDK utilizes an object capability model to ensure the reliability of modules by the

granting of capabilities. A capability is described as a transferable right to perform operations on a

given object. As a consequence of the object capability model, security properties can be established

and maintained regardless of incoming unknown objects with faulty or malicious parts.

Capabilities allow for the provisioning, tracking, and authenticating of multi-owner privileges during

runtime. Using capabilities, IBC can authenticate module actions so that modules remain within their

encapsulated permissions.

Keeper

Keeper refers to a Cosmos SDK abstraction whose role is to manage access to the subset of state

defined by various modules. Keepers provide developers with the ability to create module-specific

memory stores that are scoped to their particular module. These scoped keepers can access a

restricted subset of state defined by the module. Scoped keepers (also called sub-keepers), are

bootstrapped at app initialization and cannot escape their module scope, ensuring that different

modules cannot interfere with one another. If a module needs access to a subset of state defined in

another module, a reference to the second module's keeper needs to be passed to the original module.

Scoped keepers can create capabilities at initialization. Other modules must claim that capability in

order to use it. Any module may check that a capability, with a particular name and that it has been

associated with, does exist. Modules can fetch the capabilities they have already claimed, but remain

unaware of any capabilities they have not claimed.

Scoped keepers have a persistent state and in-memory state. Their persistent memory maintains an

incrementing index that maps a capability index to a set of capability owners in the form of tuples. The

in-memory state tracks capabilities with two indexes: the forward index and the reverse index. The

forward index maps the module name and capability tuples, to the capability name. The reverse index

maps the module and capability name, to the capability itself.

24Technical Paper

Packets and Channels

Modules communicate with each other by sending packets over IBC channels which are established

between two IBC ports. Similar to traditional TCP/IP, IBC Packets have identifiers for port (portID) and

channel (channelID) which allow it to accurately route and know the source of packets.

There are two types of IBC channels: Ordered and Unordered. Ordered packets must be processed by

the receiver in the order in which they were sent. Unordered packets can be processed in the order they

are received.

There are four steps for opening a new IBC channel

 Blockchain A sends a ChanOpenInit message to signal a channel initialization attempt with

Blockchain B

 Blockchain B sends a ChanOpenTry message to try opening the channel with Blockchain A

 Blockchain A sends a ChanOpenAck message to Blockchain B to mark its channel status as open

 Blockchain B sends a ChanOpenConfirm message to Blockchain A to mark its channel status as

open.

There are two steps for closing an IBC channel

 ChanCloseInit initiates closing the channel from the initiating blockchain

 ChanCloseConfirm confirms closing the channel from the responding blockchain.

Timeouts

Considering the unpredictable nature of a distributed network, IBC must handle cases where packets

either do not arrive in a timely fashion, or do not arrive at all. Packets must include a timeout height, or

timestamp timeout, to constrain the execution of the packet. If a packet reaches its timeout, it can no

longer be received by the destination chain. When this happens, a proof of packet timeout is submitted

to the original chain which may perform custom logic as a response, such as rolling back the changes or

retrying them.

Acknowledgement

Modules may also choose to execute custom logic upon processing a packet. This can be done both

synchronously or asynchronously.

25Technical Paper

WebAssembly Smart Contracts

The cosmwasm module provides a runtime for WebAssembly smart contracts. It includes methods for

contract instantiation, execution, migration, querying, and state transitions. Execution may return a result

or an error. In the case of an error, state transitions already performed will be reverted. cosmwasm is a

part of CosmWasm, which is an ecosystem for Cosmos WASM smart contracts, consisting of a Virtual

Machine, SDK, storage libraries, and the cosmwasm module.

¹⁴

WebAssembly (WASM)

WASM is a binary instruction format for a stack-based virtual machine. WASM is designed as a

portable compilation target for diverse programming languages. Smart contracts can be written in any

programming language that compiles to WASM, provided the binary output satisfies the cosmwasm

interface.

Virtual Machine (VM)

A Virtual Machine is a computer system created using software in order to emulate the functionality of

a physical computer. VMs run procedures with their own set of operating system instructions. The

CosmWasm Virtual Machine represents an abstraction of the Wasmer engine, which is a

WebAssembly runtime that enables lightweight containers to run in any environment. Wasmer engines

are mainly responsible for two things: they transform the compilation code to create a binary, and they

load those binaries so they can be executed by a caller (e.g., pushing code into executable memory). In

CosmWasm, the Wasmer engine has been modified to execute code for smart contracts in a

deterministic fashion.

Smart Contract

Smart contracts are represented on the blockchain by WASM bytes stored on-chain at a specific

identifier (codeId). This custom set of bytes runs the functions of the WASM contract and has its own

unique state. Once the codeId has been instantiated, it gets a contract address on the blockchain. Any

codeId may be instantiated, at any moment, with a custom initial state. Smart contracts are dynamically

uploaded, unlike Cosmos SDK modules, which are loaded during compile time. Smart contracts and

modules can interact with each other.

¹⁴ https://github.com/CosmWasm/cosmwasm WebAssembly Smart Contracts for Cosmos SDK. 2022.

https://github.com/CosmWasm/cosmwasm

26Technical Paper

There are two steps required for deploying a smart contract are

 Upload (e.g., archwayd tx wasm store

 Instantiate (e.g., archwayd tx wasm instantiate)

During Upload, WASM bytecode–which has been optimized by the CosmWasm optimizer–is stored on

the blockchain without a state, and a codeId is assigned to the bytecode. During Instantiation, an

instance of the bytecode stored at a given codeId is assigned its contract address and may be

initialized with a state. Once a contract is Instantiated, its methods can be consumed. Consumable

operations of a contract, or “entry points”, are methods that can be called by accounts, contracts, and

modules. They include: Instantiate, Query, Execute, Sudo, and Migrate.

Instantiate is an entry point and message for initializing the contract and its state.

Query is an entry point and message type for reading the contract’s state.

Execute is an entry point and message type for performing state transitions.

Sudo is an entry point for granting privileged access to a contract, it can only be called by modules.

Migrate is an entry point and message type for moving state between different versions of a contract.

Smart contracts also possess three important properties, which are: Portability, Immutability, and

Extensibility.

Portability refers to the fact contracts can be launched on any blockchain that implements cosmwasm

(e.g. can be ported between chains).

Immutability means message formats cannot be changed (which would cause breaking changes and

require a migration of their state).

Extensibility means contracts can implement custom messages and message types, and can extend

default messaging and message types, without having to worry about underlying protocol changes (e.g.

network upgrades).

Actor Model

cosmwasm uses the actor model for distributed systems. This model defines actors as primitives in

concurrent computations. During contract operations the execution is an actor that has exclusive rights

to the internal state of the smart contract. Actors cannot call each other directly, but they can trigger

calls to one another upon completion of an execution (e.g. synchronously). By enforcing that internal

state is restricted to the scope of an actor, CosmWasm VM serializes state transitions ensuring atomic

execution and guaranteeing determinism.

27Technical Paper

Resource limits

A “fork bomb” is an attack in which some process is invoked to continuously replicate itself. To protect

against denial of service attacks, wherein malicious actors upload fork bombs to consume resources of

the node (e.g. causing the network to halt), the CosmWasm Virtual Machine constrains the resources of

a node. VM constraints placed on nodes will limit the following resources

 Memory capacit

 CPU usag

 Disk usage

Memory capacity is limited to 32MB. This allows for most computations (barring a few notable

examples, e.g. zero knowledge circuits).

CPU usage is constrained by the Wasmer runtime. The runtime calculates prices of operations before

they are executed, which allows deterministic gas consumption regardless of the environment (e.g.

transactions consuming too much gas can be rejected prior to their execution).

Disk usage is constrained by gas costs. All disk access is determined by the Cosmos SDK KVStore

(e.g., key-value store, handled by scoped keepers). The KVStore enforces gas consumption which

prices out malicious parties, as transactions require a gas payment proportional to the computational

effort required by the execution.

Authorization and Grant Module

The x/authz module handles granting privileged access on behalf of a granter to a grantee.

A grant allows the grantee to execute Cosmos SDK messages on behalf of the granter. Granters can

always revoke privileges they have granted to any grantee.

¹⁵

Authorization

The Cosmos SDK includes some standard authorizations which can be granted to grantees, such as:

Generic Authorization, Send Authorization, and Stake Authorization.

Generic Authorization gives the grantee unrestricted permissions to execute Cosmos SDK messages

on behalf of the granter.

Send Authorization sets a spending limit on the grantee funds which can be spent by the grantee.

¹⁵ https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/README.md Cosmos SDK Authorization and Grant Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/README.md

28Technical Paper

Stake Authorization allows the grantee to delegate, undelegate, or redelegate on the behalf of the

granter, and sets a limit on the amount of funds the grantee can delegate, undelegate, or redelegate.

Cosmos SDK also allows developers to define custom authorizations. Custom defined authorizations

must include the following

 They must process stateless validation of SDK messages

 They must determine whether a grant permits, or does not permit, executing SDK messages

 They must return a qualified SDK message service method that can accept or reject a request.

Grant

Grants can be read from the blockchain application state.

They are identified by combining the granter address bytes, grantee address bytes, and authorization

type. This prevents granters from having multiple grants for a single authorization type at the  

same time.

Whenever a grant is created, it goes through a grant queue, which allows for the pruning of grants from

the application state.

29Technical Paper

Fee Grant Module

The x/feegrant module allows accounts to grant fee allowances. Fee allowances permit another

account, the granter account, to pay for the fees of the grantee. Grantees will not need to maintain their

own account balance for paying network fees (e.g. gas fees for submitting a transaction). Just like x/

authz, x/feegrant uses a granter model. In this model, a granter permits an allowance to the grantee,

but granters always retain the right to revoke any fee grants which they have granted.

¹⁶

Allowances

The Cosmos SDK defines three standard types of allowances. These types are: Basic Allowance,

Periodic Allowance, and Allowed Message Allowance.

Basic Allowances permit the grantee to use a fee from the granter’s account. This grant is constrained

by a time limit and spending limit. If either of these constraints is violated, the allowance will be

removed from state.

Periodic Allowances are a repeating type of fee allowance which operate continuously for a period of

time, after which they are no longer enforceable and will be removed from state. This allowance type

may also have a reset time and spending limit.

Allowed Message Allowance is an allowance type which limits spending of the granter’s funds to a

specific set of SDK messages defined by the granter (e.g. messages to a specific dapp). This allowance

may be basic or periodic in nature, following its individual constraints.

Cosmos SDK also allows developers to define custom allowances. Custom defined allowances must

include logic to perform

 Stateless validation of the SDK messag

 Retrieval of the grant expiration deadlin

 An Accept method containing any logic necessary to enforce the constraints of the custom

allowance

¹⁶ https://github.com/cosmos/cosmos-sdk/blob/main/x/feegrant/README.md Cosmos SDK Fee Grant Module. 2022.

https://github.com/cosmos/cosmos-sdk/blob/main/x/feegrant/README.md

30Technical Paper

Rewards Module Exclusive

The x/rewards module enables Cosmos SDK blockchains to calculate and distribute ARCH tokens to

smart contracts that bring transaction volume to the network. The module also introduces the concept

of a minimum consensus fee, which sets the lower bound of a transaction fee.

¹⁷

Decentralized Application (dapp) Incentives

Decentralized Applications, or dapps, are applications deployed to the network as WASM smart

contracts. Developers can choose for their dapps to receive tokens by sending a transaction with a

custom message type (MsgSetContractMetadata), which will be processed by  

x/rewards. Tokens sent to dapps are proportional to gas consumed by transactions made to a smart

contract on a per block basis.

The more gas a contract uses, the greater the amount of tokens will be that the contract will receive.

Tracking of gas consumption is handled by the x/tracking module.

Dapps receive a portion of the transaction fees they generate and a percentage of inflation.

Transaction fees

Dapps receive a portion of network transaction fees, which are calculated based on this formula:

ContractFeeRewards = (TxFees x TxFeeRebateRatio) x ———————————————
ContractTxGasUsed

TxGasUsed

Where

 TxFees are transaction fees paid by a user (e.g., an account

 TxFeeRebateRatio is an x/rewards module parameter that defines the ratio to split fees between

the Fee Collector and the Rewards module accounts ([0..1)

 ContractTxGasUsed is the total gas used by the contract within this transactio

 TxGasUsed is the total gas used by all contracts within this transaction

¹⁷ https://github.com/archway-network/archway/tree/main/x/rewards Archway Rewards Module. 2022.

https://github.com/archway-network/archway/tree/main/x/rewards

31Technical Paper

Inflation Incentives

A portion of the per block inflation minted by the x/mint module is given to dapps based on their usage.  

The formula for calculating this is:

ContractInflationRewards = (MintedTokens x InflationRewardsRatio) x —————————————————
ContractTotalGasUsed

BlockGasLimit

Where

 MintedTokens is the amount of new tokens minted per block by the x/mint modul

 InflationRewardsRatio is an x/rewards module parameter that defines the ratio to split inflation

between the Fee Collector and the Rewards module accounts ([0..1)

 ContractTotalGasUsed is the total gas used by the contract within this bloc

 BlockGasLimit is the maximum gas limit per block (e.g., a consensus parameter)

Minimum Consensus Fee

Minimum Consensus Fee is a network parameter created to guard the network from malicious

developers or block producers. A malicious actor could be someone creating artificial network activity

(e.g. spam transactions) to receive larger developer incentives. The minimum consensus fee guards

against this type of attack by enforcing a price for one gas unit such that any incentives received are

unprofitable compared to the cost of sending the initial transaction to the contract.

The formula for calculating the minimum transaction fee of the network is:

MinimumTxFee = MinConsensusFee x TxGasLimit

Where

 TxGasLimit refers to the minimum gas required by Cosmos SDK to execute a transaction

32Technical Paper

The minimum consensus fee is updated on a per block basis within the Rewards module. First, the

inflation incentives are updated (e.g., based on dynamic inflation of the network), and then the minimum

consensus fee is updated. The formula for calculating this is:

InflationBlockRewards = (MintedTokens x RewardsRatio)

MinConsensusFee = ——
InflationBlockRewards

BlockGasLimit x TxFeeRebateRatio - BlockGasLimit

Where

 TxFeeRebateRatio is an x/rewards module parameter that defines the ratio to split fees between

the Fee Collector and the Rewards module accounts ([0..1)

 InflationRewardsRatio is an x/rewards module parameter that defines the ratio to split inflation

incentives between the Fee Collector and the Rewards module accounts ([0..1)

 MintedTokens is the amount of new tokens minted per block by the x/mint modul

 BlockGasLimit is the maximum gas limit per block (e.g., a consensus parameter)

Contract Premiums

Contract premiums allow smart contract developers to define a custom flat fee for interacting with their

smart contract.

Contract premiums can be used to cover hidden costs of a smart contract, for example a NFT

marketplace which delivers goods can use contract premiums to cover delivery costs.

The reasons for using contract premiums over using x/wasm funds are

 Fee predictability: Contract Premiums define a standardized way to define contract custom fees

and can be used by wallets to predict fee

 Rewards on Msg Fail: When using Contract Premiums rewards will be distributed even when the

contract msg execution fails. Using the x/wasm funds way would not reward the developer if the

msg execution failed due to bad input by the user

 Rewards withdrawal: Contract Premiums sends all the rewards to the configured rewards address.

Using the x/wasm funds option would send all the funds to the smart contract unless custom

transfer logic is implemented.

https://book.cosmwasm.com/basics/funds.html

33Technical Paper

 Easier regulatory compliance: Using contract premiums, developer receives the rewards only when

they explicitly request to withdraw (similar to how staking rewards works). Using x/wasm funds to

receive the funds, which happens immediately, might complicate the tax situation based on the

jurisdiction

 One configuration to rule them all: Once set, Contract Premiums are applied to all Msg Executions

exposed by the contract, as opposed having to be configured for every msg.

Tracking Module Exclusive

x/tracking is a custom Archway module. It enables the tracking of gas consumption, on a per

transaction basis, of CosmWasm Execute and Migrate operations in smart contracts.

¹⁸

Contract Operation Objects

Transactions could have multiple operations for one or more contracts (e.g. a contract calling the

Execute entry point of another contract). In order to persist this information, a contract operation object

is created. This object is pruned whenever dapp incentives are disbursed.

Transaction Info

Trackable transactions must have two unique identifiers: a height, and a gas value; which are

represented in an abstraction called Transaction Info.

Block height refers to the height of the blockchain at which the execution was performed, the gas value

is a total represented by the sum of gas consumed in all contract operations of the transaction. 

The formula for calculating this gas value is:

TotalGas = GasSDK + GasVM

Where

 GasSDK is the total gas used by the transaction outside of the WASM Virtual Machin

 GasVM is the total gas used by the contract within the WASM Virtual Machine

¹⁸ https://github.com/archway-network/archway/tree/main/x/tracking Archway Tracking Module. 2022.

https://github.com/archway-network/archway/tree/main/x/tracking

34Technical Paper

Tracking Engine and Gas Processor

Archway uses a modified version of the CosmWasm Wasmer Engine. These modifications enable a

custom gas processor called the tracking engine. The tracking engine keeps a record of each contract’s

Instantiate, Execute, and Migrate operations. The gas processor intercepts smart contract operations

and handles tracking the gas usage of contract operations.

Tracking the gas consumption of contract operations in a transaction involves several steps.

35Technical Paper

First, the transaction is received by an AnteHandler in  

x/tracking. Next, a Transaction Info is created. In the third step, the gas processor creates a contract

operation object. Lastly, EndBlock finalizes gas tracking for the block. To finalize gas tracking,

EndBlock retrieves the Transaction Info object created in the block, and then it retrieves the contract

operation object linked to in the Transaction Info object. For each Transaction Info in the block, three

distinct gas values are tabulated. The values tabulated are the total gas used by the transaction outside

of the CosmWasm VM (e.g., GasSDK), the total gas used by the contract within the CosmWasm VM

(e.g. GasVM), and the final gas tracking value (e.g. the sum of GasSDK + GasVM) which represents the

total gas consumed by the smart contract in the transaction.

36Technical Paper

Conclusion
Archway is expanding upon the framework of Cosmos SDK to enable consistent revenue streams for

builders of dapps and web3 tooling. The additions of the x/rewards and x/tracking modules allow for

the utilization of the network to directly benefit those who build its utility. Future additional module

integration will be streamlined due to the efficient modular nature of the Archway blockchain.
 

As the economic innovation driving Archway’s development blossoms, Archway will remain at the

cutting edge of economic sustainability, technical advancement, and security. Not all applications need

their own blockchain, and Archway’s technical and economic infrastructure will simplify and readily

scale smart-contract development and deployment.

By creating opportunities for independent developers to earn perpetual revenue from the utilization of

their dapps and tooling, Archway aims to cultivate a brilliant developer community devoted to

advancing the technology and user adoption of web3.

37Technical Paper

References
Application Blockchain Interface. Tendermint. 2022.

Archway Lightpaper: An Introduction to Archway. Archway.io.

Archway Rewards Module. Archway. 2022.

Archway Tracking Module. Archway. 2022.

Cosmos SDK Auth Module. Cosmos. 2022.

https://github.com/tendermint/tendermint/tree/main/abci

https://archway.io/assets/Archway-Lightpaper.pdf

https://github.com/archway-network/archway/tree/main/x/rewards

https://github.com/archway-network/archway/tree/main/x/tracking

 https://github.com/cosmos/cosmos-sdk/

Cosmos SDK Authorization and Grant Module. Cosmos. 2022.

blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md

https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/

Cosmos SDK Authorization and Grant Module. Cosmos. 2022.

blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md

https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/

Cosmos SDK Bank Module. Cosmos. 2022.

README.md

 https://github.com/cosmos/cosmos-sdk/

Cosmos SDK Crisis Module. Cosmos. 2022.

blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/bank/README.md

 https://github.com/cosmos/cosmos-sdk/blob/

Cosmos SDK Evidence Module. Cosmos. 2022.

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/crisis/README.md

https://github.com/cosmos/cosmos-sdk/blob/

Cosmos SDK Fee Grant Module. Cosmos. 2022.

Cosmos SDK Governance Module. Cosmos. 2022.

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md

https://github.com/cosmos/cosmos-sdk/blob/main/x/feegrant/README.md

https://github.com/cosmos/cosmos-sdk/blob/

Cosmos SDK Minting Mechanism. Cosmos. 2022.

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md

https://github.com/cosmos/cosmos-sdk/blob/

Cosmos SDK Slashing Module. Cosmos. 2022.

 df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md

https://github.com/cosmos/cosmos-sdk/blob/

Cosmos SDK Staking Module. Cosmos. 2022.

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/slashing/README.md

https://github.com/cosmos/cosmos-sdk/

Cosmos SDK Upgrade Module. Cosmos. 2022.

blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/staking/README.md

https://github.com/cosmos/cosmos-sdk/blob/

High-level Overview. Cosmos SDK Documentation.

Inter-Blockchain Communication Protocol. Cosmos. 2022.

WebAssembly Smart Contracts for the Cosmos SDK. Cosmos. 2022.

df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/upgrade/README.md

 https://docs.cosmos.network/main/intro/overview

https://github.com/cosmos/ibc-go

https://github.com/CosmWasm/cosmwasm

https://github.com/tendermint/tendermint/tree/main/abci
https://archway.io/assets/Archway-Lightpaper.pdf
https://github.com/archway-network/archway/tree/main/x/rewards
https://github.com/archway-network/archway/tree/main/x/tracking
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md
https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/auth/README.md
https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/README.md
https://github.com/cosmos/cosmos-sdk/blob/main/x/authz/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/bank/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/bank/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/crisis/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/crisis/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/evidence/README.md
https://github.com/cosmos/cosmos-sdk/blob/main/x/feegrant/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/gov/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/mint/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/slashing/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/slashing/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/staking/README.md
https://github.com/cosmos/cosmos-sdk/blob/2418c3ef2e6f74fd6e7575b743fc1da4b53ab972/x/staking/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/upgrade/README.md
https://github.com/cosmos/cosmos-sdk/blob/df4d6d1a4cd9fa0247f9db9378db857d95a1c1cb/x/upgrade/README.md
https://docs.cosmos.network/main/intro/overview
https://github.com/cosmos/ibc-go
https://github.com/CosmWasm/cosmwasm

Technical Paper

medium.com/archwayhq

twitter.com/archwayhq

discord.com/invite/archwayhq

github.com/archway-network

https://medium.com/archwayhq
https://twitter.com/archwayHQ
https://discord.com/invite/archwayhq
https://github.com/archway-network

